Lines of research

Our lab’s main research interests are in the cognitive neuroscience of attention, cognitive control, and perception. At each and every moment of our lives, we are bombarded by a welter of sensory information coming at us from a myriad of directions and through our various sensory modalities — much more than we can fully process. We must continuously select and extract the most important information from this welter of sensory inputs and choose the optimal response. How the human brain accomplishes this is one of the core challenges of modern cognitive neuroscience. We use a combination of electrophysiological (ERPs, MEG, oscillatory EEG) and functional neuroimaging (fMRI) methods to study the time course, functional neuroanatomy, and mechanisms of attentional processes, as well as how these processes interact with other fundamental cognitive functions.

This multimethodological approach is directed along several main lines of research:

(Click here for a complete list of publications.)

  • Visual attention. Study of the brain activity and mechanisms underlying the executive control of visual attention and how such attention modulates sensory and perceptual processing in the brain. Sample papers
    • Woldorff et al., 2002. Temporal dynamics of the effects of lateralized visual attention. Cognitive Brain Research. Full citation and PDF
      Woldorff, M. G., Liotti, M., Seabolt, M., Busse, L., Lancaster, J. L., & Fox, P. T. (2002). The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention. Brain Res Cogn Brain Res, 15(1), 1-15.
    • Woldorff et al., 1997. Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping. Full citation and PDF
      Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., … Jerabek, P. (1997). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Hum Brain Mapp, 5(4), 280-286. doi: 10.1002/(SICI)1097-0193(1997)5:4<280::AID-HBM13>3.0.CO;2-I
    • Woldorff et al., 2004. Functional parcellation of attentional control regions of the brain. Journal of Cognitive Neuroscience. Full citation and PDF
      Woldorff, M. G., Hazlett, C. J., Fichtenholtz, H. M., Weissman, D. H., Dale, A. M., & Song, A. W. (2004). Functional parcellation of attentional control regions of the brain. J Cogn Neurosci, 16(1), 149-165. doi: 10.1162/089892904322755638
    • Weissman et al., 2006. The neural bases of momentary lapses in attention. Nature Neuroscience. Full citation and PDF
      Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nat Neurosci, 9(7), 971-978. doi: 10.1038/nn1727
    • Grent-‘t-Jong & Woldorff, 2007. Timing and sequence of brain activity in top-down control of visual-spatial attention. PLOS Biology. Full citation and PDF
      Grent-‘t-Jong, T., & Woldorff, M. G. (2007). Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biol, 5(1), e12. doi: 10.1371/journal.pbio.0050012
    • Grent-‘t-Jong et al., 2011. Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cerebral Cortex. Full citation and PDF
      Grent-‘t-Jong, T., Boehler, C. N., Kenemans, J. L., & Woldorff, M. G. (2011). Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cereb Cortex, 21(10), 2204-2216. doi: 10.1093/cercor/bhq279
    • Wu et al., 2011. The temporal dynamics of object processing in visual cortex during the transition from distributed to focused spatial attention. Journal of Cognitive Neuroscience. Full citation and PDF
      Wu, C. T., Libertus, M. E., Meyerhoff, K. L., & Woldorff, M. G. (2011). The temporal dynamics of object processing in visual cortex during the transition from distributed to focused spatial attention. J Cogn Neurosci, 23(12), 4094-4105. doi: 10.1162/jocn_a_00045
  • Auditory attention. In parallel to the visual attention studies, this research investigates the executive control of auditory attention and how such attention modulates auditory sensory and perceptual processing in the brain. Sample papers
    • Woldorff, Hansen, & Hillyard, 1987. Evidence for effects of selective attention in the mid-latency range of the human auditory event-related potential. Electroencephalography and clinical neurophysiology. Full citation and PDF
      Woldorff, M., Hansen, J. C., & Hillyard, S. A. (1987). Evidence for effects of selective attention in the mid-latency range of the human auditory event-related potential. Electroencephalogr Clin Neurophysiol Suppl, 40, 146-154.
    • Woldorff, Hackley, & Hillyard, 1991. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology. Full citation and PDF
      Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28(1), 30-42.
    • Woldorff & Hillyard, 1991. Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and clinical neurophysiology. Full citation and PDF
      Woldorff, M. G., & Hillyard, S. A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol, 79(3), 170-191.
    • Woldorff et al., 1993. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences (PNAS). Full citation and PDF
      Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., Pantev, C., Sobel, D., & Bloom, F. E. (1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A, 90(18), 8722-8726.
    • Woldorff, 1995. Selective listening at fast stimulus rates: so much to hear, so little time. Electroencephalography and Clinical Neurophysiology. Full citation and PDF
      Woldorff, M. G. (1995). Selective listening at fast stimulus rates: so much to hear, so little time. Electroencephalogr Clin Neurophysiol Suppl, 44, 32-51.
    • Liotti, Ryder, & Woldorff, 1998. Auditory attention in the congenitally blind: where, when and what gets reorganized? Neuroreport. Full citation and PDF
      Liotti, M., Ryder, K., & Woldorff, M. G. (1998). Auditory attention in the congenitally blind: where, when and what gets reorganized? Neuroreport, 9(6), 1007-1012.
    • Baumgart et al., 1999. A movement-sensitive area in auditory cortex. Nature. Full citation and PDF
      Baumgart, F., Gaschler-Markefski, B., Woldorff, M. G., Heinze, H. J., & Scheich, H. (1999). A movement-sensitive area in auditory cortex. Nature, 400(6746), 724-726. doi: 10.1038/23385
    • Wu et al., 2007. The neural circuitry underlying the executive control of auditory spatial attention. Brain Research. Full citation and PDF
      Wu, C. T., Weissman, D. H., Roberts, K. C., & Woldorff, M. G. (2007). The neural circuitry underlying the executive control of auditory spatial attention. Brain Res, 1134(1), 187-198. doi: 10.1016/j.brainres.2006.11.088
    • Gamble & Woldorff, 2014. The temporal cascade of neural processes underlying target detection and attentional processing during auditory search. Cerebral Cortex. Full citation and PDF
      Gamble, M. L., & Woldorff, M. G. (2014). The temporal cascade of neural processes underlying target detection and attentional processing during auditory search. Cereb Cortex. doi: 10.1093/cercor/bhu047
    • Gamble & Woldorff, 2015. Rapid context-based identification of target sounds in an auditory scene. Journal of Cognitive Neuroscience. Full citation and PDF
      Gamble, M. L., & Woldorff, M. G. (2015). Rapid context-based identification of target sounds in an auditory scene. J Cogn Neurosci, 1-10. doi: 10.1162/jocn_a_00814
  • Multisensory attention and multisensory integration. Understanding the mechanisms of the executive control of attention across sensory modalities. This line of research is also aimed at understanding the mechanisms of how we integrate auditory and visual information from a multi-sensory object, how attention influences such integration processes, and the brain mechanisms underlying multisensory perceptual illusions. Sample papers
    • Busse et al., 2005. The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences (PNAS). Full citation and PDF
      Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. (2005). The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci U S A, 102(51), 18751-18756. doi: 10.1073/pnas.0507704102
    • Talsma & Woldorff, 2005. Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience. Full citation and PDF
      Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. J Cogn Neurosci, 17(7), 1098-1114. doi: 10.1162/0898929054475172
    • Senkowski et al., 2007. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia. Full citation and PDF
      Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C. S., & Woldorff, M. G. (2007). Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia, 45(3), 561-571. doi: 10.1016/j.neuropsychologia.2006.01.013
    • Talsma, Doty, & Woldorff, 2007. Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cerebral Cortex. Full citation and PDF
      Talsma, D., Doty, T. J., & Woldorff, M. G. (2007). Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb Cortex, 17(3), 679-690. doi: 10.1093/cercor/bhk016
    • Talsma et al., 2010. The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences. Full citation and PDF
      Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci, 14(9), 400-410. doi: 10.1016/j.tics.2010.06.008
    • Donohue et al., 2011. The cross-modal spread of attention reveals differential constraints for the temporal and spatial linking of visual and auditory stimulus events. Journal of Neuroscience. Full citation and PDF
      Donohue, S. E., Roberts, K. C., Grent-‘t-Jong, T., & Woldorff, M. G. (2011). The cross-modal spread of attention reveals differential constraints for the temporal and spatial linking of visual and auditory stimulus events. J Neurosci, 31(22), 7982-7990. doi: 10.1523/JNEUROSCI.5298-10.2011
    • Donohue, Green, & Woldorff, 2015. The effects of attention on the temporal integration of multisensory stimuli. Frontiers in Integrative Neuroscience. Full citation and PDF
      Donohue, S. E., Green, J. J., & Woldorff, M. G. (2015). The effects of attention on the temporal integration of multisensory stimuli. Frontiers in Integrative Neuroscience, 9, 32. doi:10.3389/fnint.2015.00032
  • Attention and conflict processing. Understanding how the brain employs attentional and cognitive-control mechanisms to stay focused on task-relevant stimuli and filter out distracting or conflicting input from concurrent sensory stimuli. Sample papers
    • Liotti et al., 2000. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia. Full citation and PDF
      Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701-711.
    • Weissman et al., 2003. Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Neuroimage. Full citation and PDF
      Weissman, D. H., Giesbrecht, B., Song, A. W., Mangun, G. R., & Woldorff, M. G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Neuroimage, 19(4), 1361-1368
    • Weissman et al., 2005. Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex. Full citation and PDF
      Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cereb Cortex, 15(2), 229-237. doi: 10.1093/cercor/bhh125
    • Appelbaum, Meyerhoff, & Woldorff, 2009. Priming and backward influences in the human brain: processing interactions during the stroop interference effect. Cerebral Cortex. Full citation and PDF
      Appelbaum, L. G., Meyerhoff, K. L., & Woldorff, M. G. (2009). Priming and backward influences in the human brain: processing interactions during the stroop interference effect. Cereb Cortex, 19(11), 2508-2521. doi: 10.1093/cercor/bhp036
    • Krebs, Boehler, & Woldorff, 2010. The influence of reward associations on conflict processing in the Stroop task. Cognition. Full citation and PDF
      Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117(3), 341-347. doi: 10.1016/j.cognition.2010.08.018
    • Krebs et al., 2011. The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience. Full citation and PDF
      Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. J Neurosci, 31(26), 9752-9759. doi: 10.1523/JNEUROSCI.0732-11.2011
    • Donohue et al., 2012. Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task. Cognitive Affective & Behavioral Neuroscience. Full citation and PDF
      Donohue, S. E., Liotti, M., Perez, R., 3rd, & Woldorff, M. G. (2012). Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task. Cogn Affect Behav Neurosci, 12(1), 1-15. doi: 10.3758/s13415-011-0060-z
    • Appelbaum et al., 2012. Strategic allocation of attention reduces temporally predictable stimulus conflict. Journal of Cognitive Neuroscience. Full citation and PDF
      Appelbaum, L. G., Boehler, C. N., Won, R., Davis, L., & Woldorff, M. G. (2012). Strategic allocation of attention reduces temporally predictable stimulus conflict. J Cogn Neurosci, 24(9), 1834-1848. doi: 10.1162/jocn_a_00209
    • Krebs et al., 2013. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One. Full citation and PDF
      Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1), e53894. doi: 10.1371/journal.pone.0053894
    • Appelbaum et al., 2014. The dynamics of proactive and reactive cognitive control processes in the human brain. Journal of Cognitive Neuroscience. Full citation and PDF
      Appelbaum, L. G., Boehler, C. N., Davis, L. A., Won, R. J., & Woldorff, M. G. (2014). The dynamics of proactive and reactive cognitive control processes in the human brain. J Cogn Neurosci, 26(5), 1021-1038. doi: 10.1162/jocn_a_00542
    • van den Berg et al., 2014. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience. Full citation and PDF
      van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cogn Affect Behav Neurosci. doi: 10.3758/s13415-014-0281-z
  • Attention-reward interactions. Both attention and reward influence behavioral task performance, but they have mostly been studied in relative isolation. This research is aimed at understanding the interactive relationship between these fundamental cognitive processes. Sample papers
    • Goyer, Woldorff, & Huettel, 2008. Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Neuroscience. Full citation and PDF
      Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. J Cogn Neurosci, 20(11), 2058-2069. doi: 10.1162/jocn.2008.20134
    • Krebs, Boehler, & Woldorff, 2010. The influence of reward associations on conflict processing in the Stroop task. Cognition. Full citation and PDF
      Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117(3), 341-347. doi: 10.1016/j.cognition.2010.08.018
    • Krebs et al., 2011. The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience. Full citation and PDF
      Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. J Neurosci, 31(26), 9752-9759. doi: 10.1523/JNEUROSCI.0732-11.2011
    • Krebs et al., 2012. The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex. Full citation and PDF
      Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb Cortex, 22(3), 607-615. doi: 10.1093/cercor/bhr134
    • Krebs et al., 2013. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One. Full citation and PDF
      Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1), e53894. doi: 10.1371/journal.pone.0053894
    • San Martín et al., 2013. Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. Journal of Neuroscience. Full citation and PDF
      San Martin, R., Appelbaum, L. G., Pearson, J. M., Huettel, S. A., & Woldorff, M. G. (2013). Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. J Neurosci, 33(16), 7011-7019. doi: 10.1523/JNEUROSCI.4242-12.2013
    • van den Berg et al., 2014. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience. Full citation and PDF
      van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cogn Affect Behav Neurosci. doi: 10.3758/s13415-014-0281-z
    • San Martín et al., 2014. Cortical Brain Activity Reflecting Attentional Biasing Toward Reward-Predicting Cues Covaries with Economic Decision-Making Performance. Cerebral Cortex. Full citation and PDF
      San Martín, R., Appelbaum, L. G., Huettel, S. A., & Woldorff, M. G. (2014). Cortical Brain Activity Reflecting Attentional Biasing Toward Reward-Predicting Cues Covaries with Economic Decision-Making Performance. Cerebral Cortex. doi: 10.1093/cercor/bhu160
    • Marini, van den Berg, & Woldorff, 2015. Reward prospect interacts with trial-by-trial preparation for potential distraction. Visual Cognition. Full citation and PDF
      Marini, F., van den Berg, B., & Woldorff, M. G. (2015). Reward prospect interacts with trial-by-trial preparation for potential distraction. Visual Cognition, (ahead-of-print), 1-23.
  • Inhibitory control. Response inhibition, a core function of cognitive control, is necessary for effectively reacting to constantly changing environmental demands. This work is aimed at understanding the neural networks underlying successful suppression of behavioral responses and flexible goal-oriented behavior. Sample papers
    • Pliszka, Liotti, & Woldorff, 2000. Inhibitory control in children with attention-deficit/hyperactivity disorder: event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biological Psychiatry. Full citation and PDF
      Pliszka, S. R., Liotti, M., & Woldorff, M. G. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biol Psychiatry, 48(3), 238-246.
    • Schmajuk et al., 2006. Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia. Full citation and PDF
      Schmajuk, M., Liotti, M., Busse, L., & Woldorff, M. G. (2006). Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia, 44(3), 384-395. doi: 10.1016/j.neuropsychologia.2005.06.005
    • Boehler et al., 2010. Pinning down response inhibition in the brain–conjunction analyses of the Stop-signal task. Neuroimage. Full citation and PDF
      Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., & Woldorff, M. G. (2010). Pinning down response inhibition in the brain–conjunction analyses of the Stop-signal task. Neuroimage, 52(4), 1621-1632. doi: 10.1016/j.neuroimage.2010.04.276
    • Boehler et al., 2011. The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One. Full citation and PDF
      Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Chen, L. C., & Woldorff, M. G. (2011). The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One, 6(10), e26386. doi: 10.1371/journal.pone.0026386
  • Attention and perceptual awareness. Attention plays a key role in what facets of the world and the self gain access to perceptual awareness. This research is aimed at understanding the role of attention in perceptual awareness and the neural basis of perceptual awareness more generally. Sample papers
    • Harris, Wu, & Woldorff, 2011. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism. Journal of Vision. Full citation and PDF
      Harris, J. A., Wu, C. T., & Woldorff, M. G. (2011). Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism. J Vis, 11(7). doi: 10.1167/11.7.3
    • Harris, McMahon, & Woldorff, 2013. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing. Journal of Cognitive Neuroscience. Full citation and PDF
      Harris, J. A., McMahon, A. R., & Woldorff, M. G. (2013). Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing. J Cogn Neurosci, 25(11), 1863-1874. doi: 10.1162/jocn_a_00443
    • Harris, Ku, & Woldorff, 2013. Neural processing stages during object-substitution masking and their relationship to perceptual awareness. Neuropsychologia. Full citation and PDF
      Harris, J. A., Ku, S., & Woldorff, M. G. (2013). Neural processing stages during object-substitution masking and their relationship to perceptual awareness. Neuropsychologia, 51(10), 1907-1917. doi: 10.1016/j.neuropsychologia.2013.05.023
    • Harris et al., 2013. Object-category processing, perceptual awareness, and the role of attention in motion-induced blindness. In: Cognitive Electrophysiology of Attention. Mangun, G.R. (Ed.), 97-106, Elsevier, 2013. Full citation and PDF
      Harris, J. A., Barack, D. L., McMahon, A. R., Mitroff, S. R., Woldorff, M. G. Object-category processing, perceptual awareness, and the role of attention in motion-induced blindness. In: Cognitive Electrophysiology of Attention. Mangun, G.R. (Ed.), 97-106, Elsevier, 2013.
  • Attentional and perceptual training. Task performance in attentional and perceptual tasks improve with training, but relatively little is known about the neural mechanisms by which these improvements are accomplished. This research is aimed at understanding the brain mechanisms underlying the improvements in task performance that result from training and experience. Sample papers
    • Weissman et al., 2002. Effects of practice on executive control investigated with fMRI. Cognitive Brain Research. Full citation and PDF
      Weissman, D. H., Woldorff, M. G., Hazlett, C. J., & Mangun, G. R. (2002). Effects of practice on executive control investigated with fMRI. Brain Res Cogn Brain Res, 15(1), 47-60.
    • Donohue, Woldorff, & Mitroff, 2010. Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics. Full citation and PDF
      Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Atten Percept Psychophys, 72(4), 1120-1129. doi: 10.3758/APP.72.4.1120
    • Clark et al., 2015. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing. Journal of Cognitive Neuroscience. Full citation and PDF
      Clark, K., Appelbaum, L. G., van den Berg, B., Mitroff, S. R., & Woldorff, M. G. (2015). Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing. J Cogn Neurosci, 35(13), 5351–9. doi: 10.1523/JNEUROSCI.1152-14.2015.
  • Other collaborative research lines:
    • Development of numerical cognition (with Dr. Elizabeth Brannon and colleagues).
    • Interactions of attention and memory (with Dr. Roberto Cabeza and colleagues).
    • Interactions of attention and emotion (with Dr. Kevin Labar and colleagues).
    • Attention and neuroeconomic decision-making (with Dr. Scott Huettel and colleagues).
  • Methodological development. Continuing development of approaches for combining fMRI and electrophysiological measures of brain activity to study mechanisms of cognitive processes. This work includes studies using simultaneous recording of EEG and fMRI measures of brain activity in the scanner, as well as development of highly novel methods for directly measuring brain electrical currents with MRI. This work is an ongoing collaboration with Dr. Allen Song (Director of the Duke Brain Imaging and Analysis Center) and other colleagues. Sample papers
    • Woldorff, 1993. Distortion of ERP averages due to overlap from temporally adjacent ERPs: Analysis and correction. Psychophysiology. Full citation and PDF
      Woldorff, M. G. (1993). Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 30(1), 98-119.
    • Burock et al., 1998. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport. Full citation and PDF
      Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9(16), 3735-3739.
    • Hinrichs et al., 2000. Deconvolution of event-related fMRI responses in fast-rate experimental designs: tracking amplitude variations. Journal of Cognitive Neuroscience. Full citation and PDF
      Hinrichs, H., Scholz, M., Tempelmann, C., Woldorff, M. G., Dale, A. M., & Heinze, H. J. (2000). Deconvolution of event-related fMRI responses in fast-rate experimental designs: tracking amplitude variations. J Cogn Neurosci, 12 Suppl 2, 76-89. doi: 10.1162/089892900564082
    • Lancaster et al., 2000. Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping. Full citation and PDF
      Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., … Fox, P. T. (2000). Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 10(3), 120-131.
    • Song, Truong, & Woldorff, 2009. Dynamic MRI of small electrical activity. Dynamic Brain Imaging. Full citation and PDF
      Song, A. W., Truong, T. K., & Woldorff, M. (2009). Dynamic MRI of small electrical activity. Methods Mol Biol, 489, 297-315. doi: 10.1007/978-1-59745-543-5_14.