Lines of research

Our lab’s main research interests are in the cognitive neuroscience of attention, cognitive control, and perception. At each and every moment of our lives, we are bombarded by a welter of sensory information coming at us from a myriad of directions and through our various sensory modalities — much more than we can fully process. We must continuously select and extract the most important information from this welter of sensory inputs and choose the optimal response. How the human brain accomplishes this is one of the core challenges of modern cognitive neuroscience. We use a combination of electrophysiological (ERPs, MEG, oscillatory EEG) and functional neuroimaging (fMRI) methods to study the time course, functional neuroanatomy, and mechanisms of attentional processes, as well as how these processes interact with other fundamental cognitive functions.

This multimethodological approach is directed along several main lines of research:

(Click here for a complete list of publications.)

  • Visual attention. Study of the brain activity and mechanisms underlying the executive control of visual attention and how such attention modulates sensory and perceptual processing in the brain. [expand title=”Sample papers” alt=”Visual attention”]
    • Woldorff et al., 2002. Temporal dynamics of the effects of lateralized visual attention. Cognitive Brain Research. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G., Liotti, M., Seabolt, M., Busse, L., Lancaster, J. L., & Fox, P. T. (2002). The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention. Brain Res Cogn Brain Res, 15(1), 1-15. [/expandsub1]
    • Woldorff et al., 1997. Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Human Brain Mapping. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., … Jerabek, P. (1997). Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs. Hum Brain Mapp, 5(4), 280-286. doi: 10.1002/(SICI)1097-0193(1997)5:4<280::AID-HBM13>3.0.CO;2-I [/expandsub2]
    • Woldorff et al., 2004. Functional parcellation of attentional control regions of the brain. Journal of Cognitive Neuroscience. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G., Hazlett, C. J., Fichtenholtz, H. M., Weissman, D. H., Dale, A. M., & Song, A. W. (2004). Functional parcellation of attentional control regions of the brain. J Cogn Neurosci, 16(1), 149-165. doi: 10.1162/089892904322755638 [/expandsub3]
    • Weissman et al., 2006. The neural bases of momentary lapses in attention. Nature Neuroscience. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nat Neurosci, 9(7), 971-978. doi: 10.1038/nn1727 [/expandsub4]
    • Grent-‘t-Jong & Woldorff, 2007. Timing and sequence of brain activity in top-down control of visual-spatial attention. PLOS Biology. [expandsub5 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Grent-‘t-Jong, T., & Woldorff, M. G. (2007). Timing and sequence of brain activity in top-down control of visual-spatial attention. PLoS Biol, 5(1), e12. doi: 10.1371/journal.pbio.0050012 [/expandsub5]
    • Grent-‘t-Jong et al., 2011. Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cerebral Cortex. [expandsub6 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Grent-‘t-Jong, T., Boehler, C. N., Kenemans, J. L., & Woldorff, M. G. (2011). Differential functional roles of slow-wave and oscillatory-alpha activity in visual sensory cortex during anticipatory visual-spatial attention. Cereb Cortex, 21(10), 2204-2216. doi: 10.1093/cercor/bhq279 [/expandsub6]
    • Wu et al., 2011. The temporal dynamics of object processing in visual cortex during the transition from distributed to focused spatial attention. Journal of Cognitive Neuroscience. [expandsub7 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Wu, C. T., Libertus, M. E., Meyerhoff, K. L., & Woldorff, M. G. (2011). The temporal dynamics of object processing in visual cortex during the transition from distributed to focused spatial attention. J Cogn Neurosci, 23(12), 4094-4105. doi: 10.1162/jocn_a_00045 [/expandsub7]

    [/expand]

  • Auditory attention. In parallel to the visual attention studies, this research investigates the executive control of auditory attention and how such attention modulates auditory sensory and perceptual processing in the brain. [expand title=”Sample papers” alt=”Auditory attention”]
    • Woldorff, Hansen, & Hillyard, 1987. Evidence for effects of selective attention in the mid-latency range of the human auditory event-related potential. Electroencephalography and clinical neurophysiology. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”] Woldorff, M., Hansen, J. C., & Hillyard, S. A. (1987). Evidence for effects of selective attention in the mid-latency range of the human auditory event-related potential. Electroencephalogr Clin Neurophysiol Suppl, 40, 146-154. [/expandsub1]
    • Woldorff, Hackley, & Hillyard, 1991. The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G., Hackley, S. A., & Hillyard, S. A. (1991). The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology, 28(1), 30-42. [/expandsub2]
    • Woldorff & Hillyard, 1991. Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalography and clinical neurophysiology. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G., & Hillyard, S. A. (1991). Modulation of early auditory processing during selective listening to rapidly presented tones. Electroencephalogr Clin Neurophysiol, 79(3), 170-191. [/expandsub3]
    • Woldorff et al., 1993. Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proceedings of the National Academy of Sciences (PNAS). [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G., Gallen, C. C., Hampson, S. A., Hillyard, S. A., Pantev, C., Sobel, D., & Bloom, F. E. (1993). Modulation of early sensory processing in human auditory cortex during auditory selective attention. Proc Natl Acad Sci U S A, 90(18), 8722-8726. [/expandsub4]
    • Woldorff, 1995. Selective listening at fast stimulus rates: so much to hear, so little time. Electroencephalography and Clinical Neurophysiology. [expandsub5 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”] Woldorff, M. G. (1995). Selective listening at fast stimulus rates: so much to hear, so little time. Electroencephalogr Clin Neurophysiol Suppl, 44, 32-51. [/expandsub5]
    • Liotti, Ryder, & Woldorff, 1998. Auditory attention in the congenitally blind: where, when and what gets reorganized? Neuroreport. [expandsub6 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Liotti, M., Ryder, K., & Woldorff, M. G. (1998). Auditory attention in the congenitally blind: where, when and what gets reorganized? Neuroreport, 9(6), 1007-1012. [/expandsub6]
    • Baumgart et al., 1999. A movement-sensitive area in auditory cortex. Nature. [expandsub7 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Baumgart, F., Gaschler-Markefski, B., Woldorff, M. G., Heinze, H. J., & Scheich, H. (1999). A movement-sensitive area in auditory cortex. Nature, 400(6746), 724-726. doi: 10.1038/23385 [/expandsub7]
    • Wu et al., 2007. The neural circuitry underlying the executive control of auditory spatial attention. Brain Research. [expandsub8 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Wu, C. T., Weissman, D. H., Roberts, K. C., & Woldorff, M. G. (2007). The neural circuitry underlying the executive control of auditory spatial attention. Brain Res, 1134(1), 187-198. doi: 10.1016/j.brainres.2006.11.088 [/expandsub8]
    • Gamble & Woldorff, 2014. The temporal cascade of neural processes underlying target detection and attentional processing during auditory search. Cerebral Cortex. [expandsub9 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Gamble, M. L., & Woldorff, M. G. (2014). The temporal cascade of neural processes underlying target detection and attentional processing during auditory search. Cereb Cortex. doi: 10.1093/cercor/bhu047 [/expandsub9]
    • Gamble & Woldorff, 2015. Rapid context-based identification of target sounds in an auditory scene. Journal of Cognitive Neuroscience. [expandsub10 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Gamble, M. L., & Woldorff, M. G. (2015). Rapid context-based identification of target sounds in an auditory scene. J Cogn Neurosci, 1-10. doi: 10.1162/jocn_a_00814 [/expandsub10]

    [/expand]

  • Multisensory attention and multisensory integration. Understanding the mechanisms of the executive control of attention across sensory modalities. This line of research is also aimed at understanding the mechanisms of how we integrate auditory and visual information from a multi-sensory object, how attention influences such integration processes, and the brain mechanisms underlying multisensory perceptual illusions. [expand title=”Sample papers” alt=”Multisensory attention and integration”]
    • Busse et al., 2005. The spread of attention across modalities and space in a multisensory object. Proceedings of the National Academy of Sciences (PNAS). [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Busse, L., Roberts, K. C., Crist, R. E., Weissman, D. H., & Woldorff, M. G. (2005). The spread of attention across modalities and space in a multisensory object. Proc Natl Acad Sci U S A, 102(51), 18751-18756. doi: 10.1073/pnas.0507704102 [/expandsub1]
    • Talsma & Woldorff, 2005. Selective attention and multisensory integration: Multiple phases of effects on the evoked brain activity. Journal of Cognitive Neuroscience. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Talsma, D., & Woldorff, M. G. (2005). Selective attention and multisensory integration: multiple phases of effects on the evoked brain activity. J Cogn Neurosci, 17(7), 1098-1114. doi: 10.1162/0898929054475172 [/expandsub2]
    • Senkowski et al., 2007. Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Senkowski, D., Talsma, D., Grigutsch, M., Herrmann, C. S., & Woldorff, M. G. (2007). Good times for multisensory integration: Effects of the precision of temporal synchrony as revealed by gamma-band oscillations. Neuropsychologia, 45(3), 561-571. doi: 10.1016/j.neuropsychologia.2006.01.013 [/expandsub3]
    • Talsma, Doty, & Woldorff, 2007. Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cerebral Cortex. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Talsma, D., Doty, T. J., & Woldorff, M. G. (2007). Selective attention and audiovisual integration: is attending to both modalities a prerequisite for early integration? Cereb Cortex, 17(3), 679-690. doi: 10.1093/cercor/bhk016 [/expandsub4]
    • Talsma et al., 2010. The multifaceted interplay between attention and multisensory integration. Trends in Cognitive Sciences. [expandsub5 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Talsma, D., Senkowski, D., Soto-Faraco, S., & Woldorff, M. G. (2010). The multifaceted interplay between attention and multisensory integration. Trends Cogn Sci, 14(9), 400-410. doi: 10.1016/j.tics.2010.06.008 [/expandsub5]
    • Donohue et al., 2011. The cross-modal spread of attention reveals differential constraints for the temporal and spatial linking of visual and auditory stimulus events. Journal of Neuroscience. [expandsub6 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Donohue, S. E., Roberts, K. C., Grent-‘t-Jong, T., & Woldorff, M. G. (2011). The cross-modal spread of attention reveals differential constraints for the temporal and spatial linking of visual and auditory stimulus events. J Neurosci, 31(22), 7982-7990. doi: 10.1523/JNEUROSCI.5298-10.2011 [/expandsub6]
    • Donohue, Green, & Woldorff, 2015. The effects of attention on the temporal integration of multisensory stimuli. Frontiers in Integrative Neuroscience. [expandsub7 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Donohue, S. E., Green, J. J., & Woldorff, M. G. (2015). The effects of attention on the temporal integration of multisensory stimuli. Frontiers in Integrative Neuroscience, 9, 32. doi:10.3389/fnint.2015.00032 [/expandsub7]

    [/expand]

  • Attention and conflict processing. Understanding how the brain employs attentional and cognitive-control mechanisms to stay focused on task-relevant stimuli and filter out distracting or conflicting input from concurrent sensory stimuli. [expand title=”Sample papers” alt=”Conflict processing”]
    • Liotti et al., 2000. An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”] Liotti, M., Woldorff, M. G., Perez, R., & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701-711. [/expandsub1]
    • Weissman et al., 2003. Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Neuroimage. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Weissman, D. H., Giesbrecht, B., Song, A. W., Mangun, G. R., & Woldorff, M. G. (2003). Conflict monitoring in the human anterior cingulate cortex during selective attention to global and local object features. Neuroimage, 19(4), 1361-1368 [/expandsub2]
    • Weissman et al., 2005. Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cerebral Cortex. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Weissman, D. H., Gopalakrishnan, A., Hazlett, C. J., & Woldorff, M. G. (2005). Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cereb Cortex, 15(2), 229-237. doi: 10.1093/cercor/bhh125 [/expandsub3]
    • Appelbaum, Meyerhoff, & Woldorff, 2009. Priming and backward influences in the human brain: processing interactions during the stroop interference effect. Cerebral Cortex. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Appelbaum, L. G., Meyerhoff, K. L., & Woldorff, M. G. (2009). Priming and backward influences in the human brain: processing interactions during the stroop interference effect. Cereb Cortex, 19(11), 2508-2521. doi: 10.1093/cercor/bhp036 [/expandsub4]
    • Krebs, Boehler, & Woldorff, 2010. The influence of reward associations on conflict processing in the Stroop task. Cognition. [expandsub5 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”] Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117(3), 341-347. doi: 10.1016/j.cognition.2010.08.018 [/expandsub5]
    • Krebs et al., 2011. The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience. [expandsub6 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. J Neurosci, 31(26), 9752-9759. doi: 10.1523/JNEUROSCI.0732-11.2011 [/expandsub6]
    • Donohue et al., 2012. Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task. Cognitive Affective & Behavioral Neuroscience. [expandsub7 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Donohue, S. E., Liotti, M., Perez, R., 3rd, & Woldorff, M. G. (2012). Is conflict monitoring supramodal? Spatiotemporal dynamics of cognitive control processes in an auditory Stroop task. Cogn Affect Behav Neurosci, 12(1), 1-15. doi: 10.3758/s13415-011-0060-z [/expandsub7]
    • Appelbaum et al., 2012. Strategic allocation of attention reduces temporally predictable stimulus conflict. Journal of Cognitive Neuroscience. [expandsub8 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Appelbaum, L. G., Boehler, C. N., Won, R., Davis, L., & Woldorff, M. G. (2012). Strategic allocation of attention reduces temporally predictable stimulus conflict. J Cogn Neurosci, 24(9), 1834-1848. doi: 10.1162/jocn_a_00209 [/expandsub8]
    • Krebs et al., 2013. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One. [expandsub9 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1), e53894. doi: 10.1371/journal.pone.0053894 [/expandsub9]
    • Appelbaum et al., 2014. The dynamics of proactive and reactive cognitive control processes in the human brain. Journal of Cognitive Neuroscience. [expandsub10 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Appelbaum, L. G., Boehler, C. N., Davis, L. A., Won, R. J., & Woldorff, M. G. (2014). The dynamics of proactive and reactive cognitive control processes in the human brain. J Cogn Neurosci, 26(5), 1021-1038. doi: 10.1162/jocn_a_00542 [/expandsub10]
    • van den Berg et al., 2014. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience. [expandsub11 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cogn Affect Behav Neurosci. doi: 10.3758/s13415-014-0281-z [/expandsub11]

    [/expand]

  • Attention-reward interactions. Both attention and reward influence behavioral task performance, but they have mostly been studied in relative isolation. This research is aimed at understanding the interactive relationship between these fundamental cognitive processes. [expand title=”Sample papers” alt=”Attention-reward interactions”]
    • Goyer, Woldorff, & Huettel, 2008. Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. Journal of Neuroscience. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Goyer, J. P., Woldorff, M. G., & Huettel, S. A. (2008). Rapid electrophysiological brain responses are influenced by both valence and magnitude of monetary rewards. J Cogn Neurosci, 20(11), 2058-2069. doi: 10.1162/jocn.2008.20134 [/expandsub1]
    • Krebs, Boehler, & Woldorff, 2010. The influence of reward associations on conflict processing in the Stroop task. Cognition. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”] Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the Stroop task. Cognition, 117(3), 341-347. doi: 10.1016/j.cognition.2010.08.018 [/expandsub2]
    • Krebs et al., 2011. The neural underpinnings of how reward associations can both guide and misguide attention. Journal of Neuroscience. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. J Neurosci, 31(26), 9752-9759. doi: 10.1523/JNEUROSCI.0732-11.2011 [/expandsub3]
    • Krebs et al., 2012. The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cerebral Cortex. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Krebs, R. M., Boehler, C. N., Roberts, K. C., Song, A. W., & Woldorff, M. G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospect and attentional task demands. Cereb Cortex, 22(3), 607-615. doi: 10.1093/cercor/bhr134 [/expandsub4]
    • Krebs et al., 2013. Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One. [expandsub5 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PLoS One, 8(1), e53894. doi: 10.1371/journal.pone.0053894 [/expandsub5]
    • San Martín et al., 2013. Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. Journal of Neuroscience. [expandsub6 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]San Martin, R., Appelbaum, L. G., Pearson, J. M., Huettel, S. A., & Woldorff, M. G. (2013). Rapid brain responses independently predict gain maximization and loss minimization during economic decision making. J Neurosci, 33(16), 7011-7019. doi: 10.1523/JNEUROSCI.4242-12.2013 [/expandsub6]
    • van den Berg et al., 2014. Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cognitive Affective & Behavioral Neuroscience. [expandsub7 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]van den Berg, B., Krebs, R. M., Lorist, M. M., & Woldorff, M. G. (2014). Utilization of reward-prospect enhances preparatory attention and reduces stimulus conflict. Cogn Affect Behav Neurosci. doi: 10.3758/s13415-014-0281-z [/expandsub7]
    • San Martín et al., 2014. Cortical Brain Activity Reflecting Attentional Biasing Toward Reward-Predicting Cues Covaries with Economic Decision-Making Performance. Cerebral Cortex. [expandsub8 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]San Martín, R., Appelbaum, L. G., Huettel, S. A., & Woldorff, M. G. (2014). Cortical Brain Activity Reflecting Attentional Biasing Toward Reward-Predicting Cues Covaries with Economic Decision-Making Performance. Cerebral Cortex. doi: 10.1093/cercor/bhu160 [/expandsub8]
    • Marini, van den Berg, & Woldorff, 2015. Reward prospect interacts with trial-by-trial preparation for potential distraction. Visual Cognition. [expandsub9 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Marini, F., van den Berg, B., & Woldorff, M. G. (2015). Reward prospect interacts with trial-by-trial preparation for potential distraction. Visual Cognition, (ahead-of-print), 1-23. [/expandsub9]

    [/expand]

  • Inhibitory control. Response inhibition, a core function of cognitive control, is necessary for effectively reacting to constantly changing environmental demands. This work is aimed at understanding the neural networks underlying successful suppression of behavioral responses and flexible goal-oriented behavior. [expand title=”Sample papers” alt=”Inhibitory control”]
    • Pliszka, Liotti, & Woldorff, 2000. Inhibitory control in children with attention-deficit/hyperactivity disorder: event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biological Psychiatry. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Pliszka, S. R., Liotti, M., & Woldorff, M. G. (2000). Inhibitory control in children with attention-deficit/hyperactivity disorder: event-related potentials identify the processing component and timing of an impaired right-frontal response-inhibition mechanism. Biol Psychiatry, 48(3), 238-246. [/expandsub1]
    • Schmajuk et al., 2006. Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Schmajuk, M., Liotti, M., Busse, L., & Woldorff, M. G. (2006). Electrophysiological activity underlying inhibitory control processes in normal adults. Neuropsychologia, 44(3), 384-395. doi: 10.1016/j.neuropsychologia.2005.06.005 [/expandsub2]
    • Boehler et al., 2010. Pinning down response inhibition in the brain–conjunction analyses of the Stop-signal task. Neuroimage. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Hopf, J. M., & Woldorff, M. G. (2010). Pinning down response inhibition in the brain–conjunction analyses of the Stop-signal task. Neuroimage, 52(4), 1621-1632. doi: 10.1016/j.neuroimage.2010.04.276 [/expandsub3]
    • Boehler et al., 2011. The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Boehler, C. N., Appelbaum, L. G., Krebs, R. M., Chen, L. C., & Woldorff, M. G. (2011). The role of stimulus salience and attentional capture across the neural hierarchy in a stop-signal task. PLoS One, 6(10), e26386. doi: 10.1371/journal.pone.0026386 [/expandsub4]

    [/expand]

  • Attention and perceptual awareness. Attention plays a key role in what facets of the world and the self gain access to perceptual awareness. This research is aimed at understanding the role of attention in perceptual awareness and the neural basis of perceptual awareness more generally. [expand title=”Sample papers” alt=”Perceptual awareness”]
    • Harris, Wu, & Woldorff, 2011. Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism. Journal of Vision. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Harris, J. A., Wu, C. T., & Woldorff, M. G. (2011). Sandwich masking eliminates both visual awareness of faces and face-specific brain activity through a feedforward mechanism. J Vis, 11(7). doi: 10.1167/11.7.3 [/expandsub1]
    • Harris, McMahon, & Woldorff, 2013. Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing. Journal of Cognitive Neuroscience. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Harris, J. A., McMahon, A. R., & Woldorff, M. G. (2013). Disruption of visual awareness during the attentional blink is reflected by selective disruption of late-stage neural processing. J Cogn Neurosci, 25(11), 1863-1874. doi: 10.1162/jocn_a_00443 [/expandsub2]
    • Harris, Ku, & Woldorff, 2013. Neural processing stages during object-substitution masking and their relationship to perceptual awareness. Neuropsychologia. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Harris, J. A., Ku, S., & Woldorff, M. G. (2013). Neural processing stages during object-substitution masking and their relationship to perceptual awareness. Neuropsychologia, 51(10), 1907-1917. doi: 10.1016/j.neuropsychologia.2013.05.023 [/expandsub3]
    • Harris et al., 2013. Object-category processing, perceptual awareness, and the role of attention in motion-induced blindness. In: Cognitive Electrophysiology of Attention. Mangun, G.R. (Ed.), 97-106, Elsevier, 2013. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Harris, J. A., Barack, D. L., McMahon, A. R., Mitroff, S. R., Woldorff, M. G. Object-category processing, perceptual awareness, and the role of attention in motion-induced blindness. In: Cognitive Electrophysiology of Attention. Mangun, G.R. (Ed.), 97-106, Elsevier, 2013. [/expandsub4]

    [/expand]

  • Attentional and perceptual training. Task performance in attentional and perceptual tasks improve with training, but relatively little is known about the neural mechanisms by which these improvements are accomplished. This research is aimed at understanding the brain mechanisms underlying the improvements in task performance that result from training and experience. [expand title=”Sample papers” alt=”Perceptual training”]
    • Weissman et al., 2002. Effects of practice on executive control investigated with fMRI. Cognitive Brain Research. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Weissman, D. H., Woldorff, M. G., Hazlett, C. J., & Mangun, G. R. (2002). Effects of practice on executive control investigated with fMRI. Brain Res Cogn Brain Res, 15(1), 47-60. [/expandsub1]
    • Donohue, Woldorff, & Mitroff, 2010. Video game players show more precise multisensory temporal processing abilities. Attention, Perception, & Psychophysics. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Donohue, S. E., Woldorff, M. G., & Mitroff, S. R. (2010). Video game players show more precise multisensory temporal processing abilities. Atten Percept Psychophys, 72(4), 1120-1129. doi: 10.3758/APP.72.4.1120 [/expandsub2]
    • Clark et al., 2015. Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing. Journal of Cognitive Neuroscience. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Clark, K., Appelbaum, L. G., van den Berg, B., Mitroff, S. R., & Woldorff, M. G. (2015). Improvement in visual search with practice: mapping learning-related changes in neurocognitive stages of processing. J Cogn Neurosci, 35(13), 5351–9. doi: 10.1523/JNEUROSCI.1152-14.2015. [/expandsub3]

    [/expand]

  • Other collaborative research lines:
    • Development of numerical cognition (with Dr. Elizabeth Brannon and colleagues).
    • Interactions of attention and memory (with Dr. Roberto Cabeza and colleagues).
    • Interactions of attention and emotion (with Dr. Kevin Labar and colleagues).
    • Attention and neuroeconomic decision-making (with Dr. Scott Huettel and colleagues).
  • Methodological development. Continuing development of approaches for combining fMRI and electrophysiological measures of brain activity to study mechanisms of cognitive processes. This work includes studies using simultaneous recording of EEG and fMRI measures of brain activity in the scanner, as well as development of highly novel methods for directly measuring brain electrical currents with MRI. This work is an ongoing collaboration with Dr. Allen Song (Director of the Duke Brain Imaging and Analysis Center) and other colleagues. [expand title=”Sample papers” alt=”Methodological development”]
    • Woldorff, 1993. Distortion of ERP averages due to overlap from temporally adjacent ERPs: Analysis and correction. Psychophysiology. [expandsub1 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Woldorff, M. G. (1993). Distortion of ERP averages due to overlap from temporally adjacent ERPs: analysis and correction. Psychophysiology, 30(1), 98-119. [/expandsub1]
    • Burock et al., 1998. Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport. [expandsub2 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Burock, M. A., Buckner, R. L., Woldorff, M. G., Rosen, B. R., & Dale, A. M. (1998). Randomized event-related experimental designs allow for extremely rapid presentation rates using functional MRI. Neuroreport, 9(16), 3735-3739. [/expandsub2]
    • Hinrichs et al., 2000. Deconvolution of event-related fMRI responses in fast-rate experimental designs: tracking amplitude variations. Journal of Cognitive Neuroscience. [expandsub3 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Hinrichs, H., Scholz, M., Tempelmann, C., Woldorff, M. G., Dale, A. M., & Heinze, H. J. (2000). Deconvolution of event-related fMRI responses in fast-rate experimental designs: tracking amplitude variations. J Cogn Neurosci, 12 Suppl 2, 76-89. doi: 10.1162/089892900564082 [/expandsub3]
    • Lancaster et al., 2000. Automated Talairach atlas labels for functional brain mapping. Human Brain Mapping. [expandsub4 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., … Fox, P. T. (2000). Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp, 10(3), 120-131. [/expandsub4]
    • Song, Truong, & Woldorff, 2009. Dynamic MRI of small electrical activity. Dynamic Brain Imaging. [expandsub5 title=”Full citation and PDF” notitle=”true” trigclass=”noarrow”]Song, A. W., Truong, T. K., & Woldorff, M. (2009). Dynamic MRI of small electrical activity. Methods Mol Biol, 489, 297-315. doi: 10.1007/978-1-59745-543-5_14. [/expandsub5]

    [/expand]